Presenting computational results

E6891 Lecture 11 2014-04-09

Today's plan

- Communicating numerical information
 - text (tables)
 - visuals (plots, images)
 - statistical summaries
- Much borrowing from
 - Andrew Gelman, Cristian Pasarica & Rahul Dodhia (2002) <u>Let's Practice What We Preach</u>, The American Statistician, 56:2, 121-130

Why a lecture about presentation?

- Step 1 of reproducing a result:
 - o what is the result?

• Reproducibility depends on clarity

• Clarity can be difficult!

Aside

• I'll use examples mainly from my own work

- These will *not* be perfect!
 - I'm not an info-vis expert

• Let's beat up on them together!

Communicating numerical data

- Quantitative information
- Qualitative comparisons
- Trends in data
- Statistical quantities

How should I present X?

- What should the reader take away?
 - Raw information? (Quantitative)
 - Comparisons? Trends? (Qualitative)

• Always put yourself in place of the reader

Figures should support the text
 o not vice versa!

Tables

- Best for reporting small amounts of data with high precision
- Useful when data has intrinsic value
 e.g., sample size, parameter range

- Not great for comparisons or large data
 - Trends can be obscure
 - Not space-efficient

Table example (not so great)

Data Set/Items	Songs	Albums	Artists	Users	Ratings/Evts.
Yahoo! Music	624,961 in total			1,000,990	262,810,175
MSD	1,000,000			1,019,318	48,373,586
Last.fm – 360K			186,642	359,347	
Last.fm – 1K			107,528	992	
MusicMicro	71,410		19,529	136,866	594,306
MMTD	133,968		25,060	215,375	1,086,808
AotM-2011	98,359			16,204	859,449

 Table 1 Statistics of public data sets for music recommendation research.

Table example (not so great)

Data Set/Items	Songs	Albums	Artists	Users	Ratings/Evts.
Yahoo! Music	624,961 in total			1,000,990	262,810,175
MSD	1,000,000			1,019,318	48,373,586
Last.fm – 360K			186,642	359,347	
Last.fm – 1K			107,528	992	
MusicMicro	71,410		19,529	136,866	594,306
MMTD	133,968		25,060	215,375	1,086,808
AotM-2011	98,359			16,204	859,449

 Table 1 Statistics of public data sets for music recommendation research.

Good

- Vertical arrangement
- Easy to interpret data

Table example (not so great)

Data Set/Items	Songs	Albums	Artists	Users	Ratings/Evts.
Yahoo! Music	624,961 in total			1,000,990	262,810,175
MSD	1,000,000			1,019,318	48,373,586
Last.fm – 360K			186,642	359,347	
Last.fm – 1K			107,528	992	
MusicMicro	71,410		19,529	136,866	594,306
MMTD	133,968		25,060	215,375	1,086,808
AotM-2011	98,359			16,204	859,449

 Table 1 Statistics of public data sets for music recommendation research.

Good

- Vertical arrangement
- Easy to interpret data

Bad

- Line clutter
- Excessive detail
- Center-alignment
- Unused column
- A lot of border lines

Table example (improved)

Collection	Songs	Artists	Items	Users	Events
Yahoo! Music [1]			625K	1M	263M
MSD [2]	1M			1M	48M
Last.fm – 360K [3]		187K	187K	356K	
Last.fm $- 1K$ [3]		107K	107K	1K	
MusicMicro [4]	71K	20K	71K	137K	594K
MMTD [5]	134K	25K	159K	215K	1M
AotM-2011 [6]	98K		98K	16K	859K

Table 1: Statistics of public data sets for music recommendation research.

Improvements

- Removed clutter
- Simplified headers
- Explicit missing values
- In-place citations

Still bad

- "Items" may be confusing
 - but that's the data...
 - clarify in text!

Best practices: tables

- Do use when numbers have intrinsic value
- Do arrange by column, not row
- **Do not** clutter with lines/rules/borders
- **Do not** use *excessive* precision
- **Do not** overload

Graphics can serve many purposes

• Space-efficient communication

• Highlight trends in data

Help the reader form comparisons

Graphics can't...

- ... make your point for you
 - But they can help

- ... tell the complete story
 - Choosing what to leave out is important!

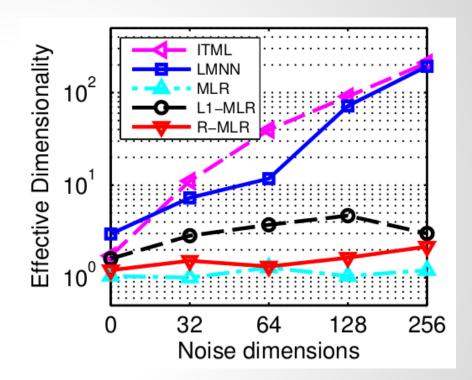
- ... make themselves presentable
 - No, not even with the Matlab defaults!

How should I display my data?

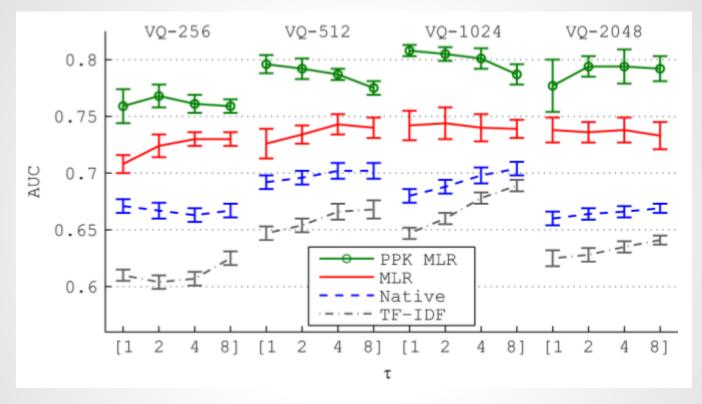
- What's the data?
 - Continuous
 - Ordered? Sequential?
 - Categorical? Binary?
 - Bounded? Non-negative? [0, 1]?
- What's the comparison?
 - Absolute (e.g., classifier accuracy)
 - Relative (e.g., histogram data)
 - Something else entirely?

No one-size-fits-all solution...

- But you can get really far with:
 - **line** (grouped data)
 - **scatter** (ungrouped data)

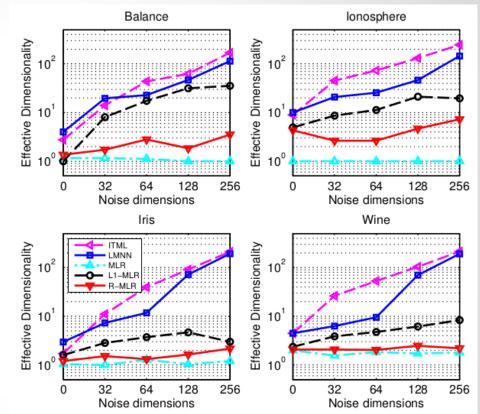

• Primary goal: simplicity

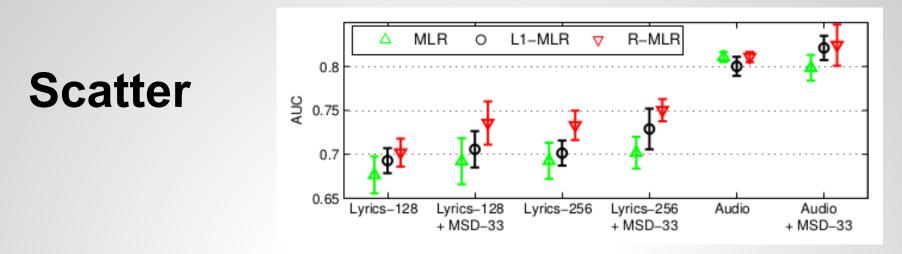
 Prefer many simple plots to one complex plot


Lines

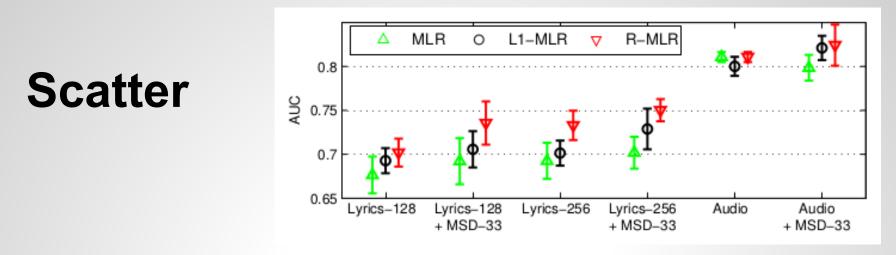
 Line grouping helps illustrate trends

 Quantity to be compared is on the vertical axis


Information overload

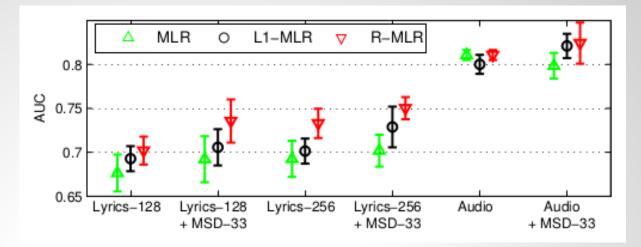


Too many comparisons for one figure:
 (4 methods) * (4 VQ values) * (4 t values)


Multiple plots

- Some redundancy is okay
- Restrict intended comparisons to lie within one subplot
- Minimize inter-plot comparisons

- Why not lines?
 - no meaningful ordering
 - clutter



- Why not lines?
 - no meaningful ordering
 - clutter

• Why not **bars**?

- obscures error bars
- invisible baseline
- fractional comparisons aren't relevant

- Why not lines?
 - no meaningful ordering
 - clutter
- Why not **bars**?
 - obscures error bars
 - invisible baseline
 - fractional comparisons aren't relevant

Bad

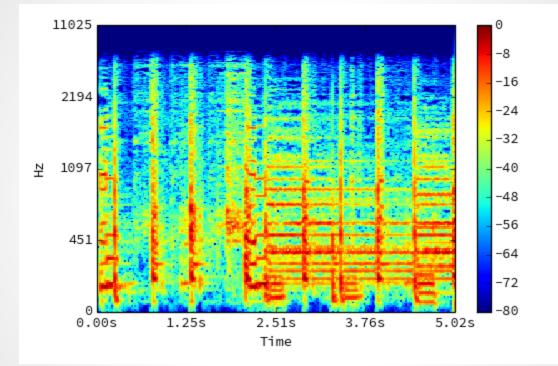
- [0.65, 0.85]?
- Maybe overloaded
- Bright green can be hard to see

Best practices: plots / subplots

- Label all axes
- Quantity of comparison on the y-axis
- Use meaningful limits when possible
 Be consistent when multi-plotting
- Be consistent with markers/styles
- Don't rely too much on color

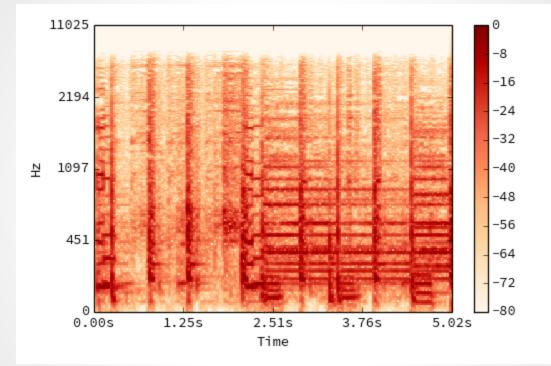
(..continued)

- If using a legend, match the ordering to the visualization
- Better yet, label points/curves directly
 As long as it's still readable...
- Use captions to resolve ambiguities
- Empty space can be ok, if it's meaningful

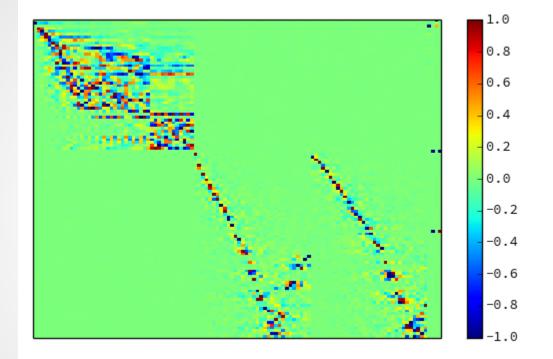

About color...

Color is the easiest thing to get wrong

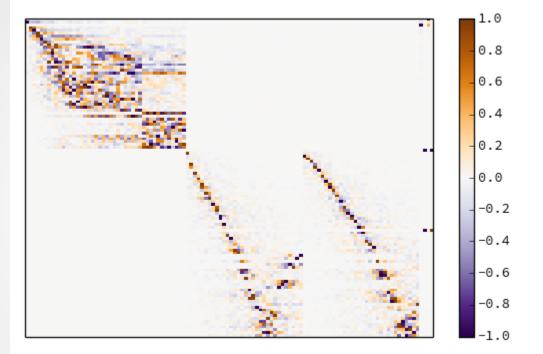
• Things to watch out for:


- printer-friendly
- projector-friendly
- colorblind-friendly
- unintended (dis)similarity

Example: spectrogram


- Jet colormap provides false contrast
- Does not translate to grayscale

Example: spectrogram



- But the data is bounded: (-∞, 0]
- Use a sequential gradient
- Observe conventions as far as possible

Example: signed data

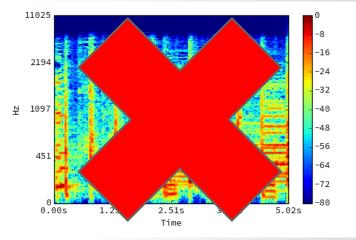
Example: signed data

 Divergent colormaps visualize both magnitude and direction (sign)

What makes color difficult?

- Numerical data -> RGB HSV
- Input data can be multi-dimensional
 Sequential data is 1d (distance from boundary)
 - **Divergent** data is 2d (magnitude, direction)
- Color parameters are non-linear
 - ... so is human perception
- Physical and perceptual constraints

Choosing a colormap 1



Choosing a colormap 2

Color-blind simulator

Best practices: colormaps

- Sequential
 - OrRd
 - Greys
 - (or any single-hue gradient)
- Divergent
 - PuOr

• Never use jet

- Rainbow maps can be ok for categorical data...
- ... but continuous rainbow maps are dangerous

Statistical quantities

- Results are typically statistical, e.g.:
 - classifier accuracy on a test sample
 - P[sample data | model]
- We use finite-sample approximations to estimate unobservable quantities
 - e.g., true accuracy of the classifier
- Approximations imply uncertainty
 this should be reported too!

Error bars

- Repeating an experiment with random sampling helps us to quantity uncertainty
 - leave-one-out, k-fold cross-validation, etc.

- Depending on the statistic being reported, different notions of uncertainty make sense
 - standard deviation
 - quantiles/inter-quartile range

Hypothesis testing

- Somewhat dicey territory these days...
- Quantify confidence in a statistical claim
 e.g., difference in accuracy between two classifiers
 are they actually different?
- Does the data support my hypothesis?
 - Assume the contrary: the null hypothesis
 - Use data to refute the null hypothesis

p-values

The p-value is the probability (under [the null hypothesis]) of observing a value of the test statistic the same as or more extreme than what was actually observed.

Wasserman, L. All of statistics: a concise course in statistical inference. Springer, 2004.

- **NOT** P[null hypothesis | data]
- A p-value can be high if
 - the null hypothesis is true (and it almost never is!)
 - the test statistic has low power

Pitfalls of p-values

- Rejection threshold is arbitrary
 0.05 vs 0.051?
 - It's better to report values directly than claim significance against a fixed threshold
- p-value does not measure effect size
 - with enough samples, any difference is "significant"
 - but is it **meaningful**?
- We usually already know the null hypothesis is false

Discussion